DESHENGRUI MACHINERY

Hotline
CNC Machine Center

CNC Machine Center

CNC machining, What is CNC machining?


CNC machining is a manufacturing process in which computer software controls the movement of tools and workpiece. The process can be used to control complex machinery movements, from grinding machines to EDM machines, from lathes to milling machines. With CNC machining, 3D cutting and removing tasks can be achieved.

CNC machining process can be used to control a range of complex machinery, from grinders and lathes to mills and routers. With CNC machining, three-dimensional cutting tasks can be accomplished in a single set of prompts.

Short for “computer numerical control,” the CNC process runs in contrast to — and thereby supersedes — the limitations of manual control, where live operators are needed to prompt and guide the commands of machining tools via levers, buttons and wheels. To the onlooker, a CNC system might resemble a regular set of computer components, but the software programs and consoles employed in CNC machining distinguish it from all other forms of computation.

Things to Learn About CNC Machining


When a CNC system is activated, the desired cuts are programmed into the software and dictated to corresponding tools and machinery, which carry out the dimensional tasks as specified, much like a robot.

In CNC programming, the code generator within the numerical system will often assume mechanisms are flawless, despite the possibility of errors, which is greater whenever a CNC machine is directed to cut in more than one direction simultaneously. The placement of a tool in a numerical control system is outlined by a series of inputs known as the part program.

With a numerical control machine, programs are inputted via punch cards. By contrast, the programs for CNC machines are fed to computers though small keyboards. CNC programming is retained in a computer’s memory. The code itself is written and edited by programmers. Therefore, CNC systems offer far more expansive computational capacity. Best of all, CNC systems are by no means static, since newer prompts can be added to pre-existing programs through revised code.

Desheng Precision located in Suzhou City, the East of China. We are a leading custom parts manufacturer. We provide leading CNC machining, precision machining, Custom Machining, Sheet metal, fabrication, stamping, casting and Steel Forging service.


CNC machining


CNC Machine Shop


CNC Machining Service



CNC MACHINE PROGRAMMING

In CNC, machines are operated via numerical control, wherein a software program is designated to control an object. The language behind CNC machining is alternately referred to as G-code, and it’s written to control the various behaviors of a corresponding machine, such as the speed, feed rate and coordination.

Basically, CNC machining makes it possible to pre-program the speed and position of machine tool functions and run them via software in repetitive, predictable cycles, all with little involvement from human operators. Due to these capabilities, the process has been adopted across all corners of the manufacturing sector and is especially vital in the areas of metal and plastic production.

For starters, a 2D or 3D CAD drawing is conceived, which is then translated to computer code for the CNC system to execute. After the program is inputted, the operator gives it a trial run to ensure no mistakes are present in the coding.

Open/Closed-Loop Machining Systems

Position control is determined through an open-loop or closed-loop system. With the former, the signaling runs in a single direction between the controller and motor. With a closed-loop system, the controller is capable of receiving feedback, which makes error correction possible. Thus, a closed-loop system can rectify irregularities in velocity and position.

In CNC machining, movement is usually directed across X and Y axes. The tool, in turn, is positioned and guided via stepper or servo motors, which replicate exact movements as determined by the G-code. If the force and speed are minimal, the process can be run via open-loop control. For everything else, closed-loop control is necessary to ensure the speed, consistency and accuracy required for industrial applications, such as metalwork.

CNC Machining is Fully Automated

In today’s CNC protocols, the production of parts via pre-programmed software is mostly automated. The dimensions for a given part are set into place with computer-aided design (CAD) software and then converted into an actual finished product with computer-aided manufacturing (CAM) software.

Any given work piece could necessitate a variety of machine tools, such as drills and cutters. In order to accommodate these needs, many of today’s machines combine several different functions into one cell. Alternately, an installation might consist of several machines and a set of robotic hands that transfer parts from one application to another, but with everything controlled by the same program. Regardless of the setup, the CNC process allows for consistency in parts production that would be difficult, if not impossible, to replicate manually.

TYPES OF CNC MACHINES

The earliest numerical control machines date to the 1940s when motors were first employed to control the movement of pre-existing tools. As technologies advanced, the mechanisms were enhanced with analog computers, and ultimately with digital computers, which led to the rise of CNC machining.

The vast majority of today’s CNC arsenals are completely electronic. Some of the more common CNC-operated processes include ultrasonic welding, hole-punching and laser cutting. The most frequently used machines in CNC systems include the following:

CNC Mills

CNC mills are capable of running on programs comprised of number- and letter-based prompts, which guide pieces across various distances. The programming employed for a mill machine could be based on either G-code or some unique language developed by a manufacturing team. Basic mills consist of a three-axis system (X, Y and Z), though most newer mills can accommodate three additional axes.

Lathes

In lathe machines, pieces are cut in a circular direction with indexable tools. With CNC technology, the cuts employed by lathes are carried out with precision and high velocity. CNC lathes are used to produce complex designs that wouldn’t be possible on manually run versions of the machine. Overall, the control functions of CNC-run mills and lathes are similar. As with the former, lathes can be directed by G-code or unique proprietary code. However, most CNC lathes consist of two axes — X and Z.

Plasma Cutters

In a plasma cutter, material is cut with a plasma torch. The process is foremost applied to metal materials but can also be employed on other surfaces. In order to produce the speed and heat necessary to cut metal, plasma is generated through a combination of compressed-air gas and electrical arcs.

Electric Discharge Machines

Electric-discharge machining (EDM) — alternately referred to as die sinking and spark machining — is a process that molds work pieces into particular shapes with electrical sparks. With EDM, current discharges occur between two electrodes, and this removes sections of a given work piece.

When the space between the electrodes becomes smaller, the electric field becomes more intense and thus stronger than the dielectric. This makes it possible for a current to pass between the two electrodes. Consequently, portions of a work piece are removed by each electrode. Subtypes of EDM include:

Wire EDM, whereby spark erosion is used to remove portions from an electronically conductive material.

Sinker EDM, where an electrode and work piece are soaked in dielectric fluid for the purpose of piece formation.

In a process known as flushing, debris from each finished work piece is carried away by a liquid dielectric, which appears once the current between the two electrodes has stopped and is meant to eliminate any further electric charges.

Water Jet Cutters

In CNC machining, water jets are tools that cut hard materials, such as granite and metal, with high-pressure applications of water. In some cases, the water is mixed with sand or some other strong substance. Factory machine parts are often shaped through this process.

Water jets are employed as a cooler alternative for materials that are unable to bear the heat-intensive processes of other CNC machines. As such, water jets are used in a range of sectors, such as the aerospace and mining industries, where the process is powerful for the purposes of carving and cutting, among other functions.

Desheng Precision provide leading CNC machining, precision machining, Custom Machining, Sheet metal, fabrication, stamping, casting and forging service.

Service Available:

CNC Machining

CNC Milling

CNC Turning

CNC machining services

Precision CNC milling

CNC turned components

Aerospace CNC machining

Custom CNC milling

Brass turned components

5 axis CNC machining

CNC milling services

CNC Turning services

Swiss precision machining

CNC milling parts

CNC Turning parts

CNC prototype machining

CNC machined parts

Aluminum CNC Turning parts

Machine shop services

CNC machined services

Steel CNC Turning

CNC machining parts

Precision machined parts

Plastic machining

CNC company

Aluminum machining

Metal machining

CNC machine shop

Steel machining

Machining aluminum

Material Available:

Stainless Steel

SS303, SS304, SS316, SS416 etc.

Steel

mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45# etc.

Brass

HPb63, HPb62, HPb61, HPb59, H59, H68, H80, H90 etc.

Copper

C11000, C12000, C12000, C26000, C51000 etc.

Aluminium

AL6061, Al6063, AL6082, AL7075, AL5052, A380 etc.

Iron

A36, 45#, 1213, 12L14, 1215 etc.

Plastic

ABS, PC, PE, POM, Delrin, Nylon, Teflon, PP,PEI, Peek.Carbon Fiber

Wood

OAK, Rosewood, Rubber Wood, Beech, Cherry

Surface Finish:

Aluminum parts

Clear Anodized
Color Anodized
Sandblast Anodized
Chemical Film
Brushing
Polishing

Stainless Steel parts

Polishing
Passivated
Sandblasting
Laser engraving
Chroming

Steel

Zinc plating
Oxide black
Nickel plating
Chrome plating
Carburized
Heat treatment
Powder Coated

Plastic

Painting
Chrome plating
Polishing
Sandblast
Laser engraving

Our Capacity:

CNC Turning

φ0.5 - φ300 * 750 mm

+/-0.005 mm

CNC Milling

510 * 1020 * 500 mm(max)

+/-0.01 mm

CNC Machining

1000 * 1000 mm(max)

+/-0.01 mm

Drawing Format

IGS, STP, X_T , DXF, DWG , Pro/E, PDF

Test Equipment

Projector, CMM, Altimeter, Micrometer, Thread Gauge, Calipers, Pin Gauge etc.

Our Fast Service:

Quotation Speed

We are aiming at to quote the parts in one working date.

Samples Delivery

It will take us 7 days to make the samples.

Mass production delivery

Our mass production time is about 15-20 days according to different quantity.

shipping

Sometimes we use DHL/FedEx/UPS/TNT to make the air ship; normally our parts are shipped by sea.

Tooling time

For the stamping parts, the tooling time is 20 days; for injection mold, it will need about 30 days.